If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+33x+126=0
a = 1; b = 33; c = +126;
Δ = b2-4ac
Δ = 332-4·1·126
Δ = 585
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{585}=\sqrt{9*65}=\sqrt{9}*\sqrt{65}=3\sqrt{65}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(33)-3\sqrt{65}}{2*1}=\frac{-33-3\sqrt{65}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(33)+3\sqrt{65}}{2*1}=\frac{-33+3\sqrt{65}}{2} $
| 2(7)-2x=4 | | −2(x+4)−1=6(x−3) | | 1/3(2x-4)+5=2/3(x+1) | | 6x−30+1=3x−3 | | X+2x-7=20 | | 0.5p=+5 | | -8k+2=5+1-5k-7 | | 3x-5(x-3)=-6+3x+11 | | 6x−30+1=3x−36x-30+1=3x-3 | | 15c-7=5c+33 | | 13=5x-8-4x | | 3/10x=5 | | -9(u+7)=4u+28 | | 10n=6+8n | | 6h=6+8h | | x-212=35 | | -43=6-7x | | X=3(a-a) | | Y=-0.5(x+0)(x-8) | | 3/1(2x-4)+5=3/2(x+1) | | 3x-6+3(2x+1)=-5(x+1) | | X+2x+(x/2)=3500 | | 8(x-3)-7(2x+1)=2 | | n+(n-2)=92 | | -3(u+4)=-2(8u-1)+5u | | 6x+4(2x-6)+17=0 | | 40+25x=25+45x | | 5p=16+p | | x+43=x+143 | | -36=4y+8y | | 6(-3)=5x+3 | | 5x/2-14=9x/5 |